求极限什么时候才能用泰勒展开式 泰勒公式一般在什么情况下使用?

[更新]
·
·
分类:行业
3187 阅读

求极限什么时候才能用泰勒展开式

泰勒公式一般在什么情况下使用?

泰勒公式一般在什么情况下使用?

泰勒公式的使用条件:实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。
泰勒展开式的重要性体现在以下五个方面:
1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
3、泰勒级数可以用来近似计算函数的值,并估计误差。
4、证明不等式。
5、求待定式的极限。
扩展资料
泰勒以微积分学中将函数展开成无穷级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。
泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

求极限,用洛必达法则和泰勒公式求出来的结果怎么不一样?

你这题没算完 式(1 cosx)/3x^2,x趋向正无穷的极限值不是等于零,而是震荡不存在 此处应继续使用洛必达法则 得到结果是-1/
6 泰勒公式使用条件是x趋向于0时,此处不适用

泰勒公式的使用条件?

泰勒公式是在一点处展开,函数必须在那一点处n阶倒数存在,在x=0处是麦克劳林展开式,一般在极限里面用的是麦克劳林展开公式,所以必须x趋于0的时候才能使用。
x趋于0才能使用是说极限式里面的x趋于0,然后可以用麦克劳林公式做展开,而且必须是x=0处展开,泰勒实际上就是高级的等价无穷小替换,如果说展开的高阶小o(x)不是趋于0的,那就错了。这也就是说麦克劳林仅仅替代了那个x0=0,然后就将一个复杂的函数转换成了一个简单的幂次函数,并且这个幂次函数在x0=0的某邻域是成立的。