组合的公式是如何推导出来的 m个数中取n个数的组合计算公式推导?

[更新]
·
·
分类:行业
3762 阅读

组合的公式是如何推导出来的

m个数中取n个数的组合计算公式推导?

m个数中取n个数的组合计算公式推导?

你可以反过来想:
从M个互不同数中取N个数,组合的种类数是X,排列的种类数是Y,
根据加法原理和乘法原理
预备定理:
排列公式A[M,N]M!/(M-N)!这个公式用乘法原理很容易证明的.
为了求所有排列数Y,
我们可以分两步完成:
第一步选择N个不同的数,由假设可知,这样的可能数是X,
第二步将这N个数进行全排列,根据排列公式:这样的可能数是N!/1N!,
根据乘法原理,YX*N!
考虑到YA[M,N]M!/(M-N)!
所以XM!/((M-N)!*N!)

有序排列组合公式的推导方法?

排列
从n个不同元素中,任取m个元素按照一定的顺序排成一列(m≤n,m与n均为自然数,下同),叫做从n个不同元素中取出m个元素的一个排列.
从n个不同元素中取出m个元素的所有排列的个数(m≤n),叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
A(n,m)n(n-1)(n-2)……(n-m 1) n!/(n-m)!
此外规定 0!1 (n!表示n(n-1)(n-2)...1, 也就是6!6x5x4x3x2x1
组合
从n个不同元素中,任取m个元素并成一组(m≤n),叫做从n个不同元素中取出m个元素的一个组合.
从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数, 用符号 C(n,m) 表示。
C(n,m)A(n,m)/m!
C(n,m)C(n,n-m), (n≥m)
加法原理和分类计数法
⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有Nm1 m2 m3 … mn种不同方法。
⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
乘法原理和分步计数法
⒈ 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有Nm1×m2×m3×…×mn种不同的方法。
⒉合理分步的要求: 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。